
Künstl Intell (2012) 26:99–106
DOI 10.1007/s13218-011-0158-z

D I S K U S S I O N

What Language Do You Use to Create Your AI Programs
and Why?

Published online: 7 December 2011
© Springer-Verlag 2011

1 Introduction

When ‘AI Languages’ was proposed as a special topic for
this journal, a lively discussion started between the editors.
On the one hand, several of us voiced the opinion that lan-
guage development is no longer a topic of AI research and
that AI researchers, just as everybody else in computer sci-
ence, use some more or less mainstream language which is
convenient for a given area of research. On the other hand,
it became immediately clear that everybody has strong feel-
ings or at least a qualified opinion about the languages which
he or she uses to create AI programs. Because we all are in-
terested in the question which language has what advantages
in the context of our area of research, we are hoping that the
readers of this journal are also interested in this topic. To get
a discussion started, we asked several colleagues for a state-
ment. The result is the collection presented in the following.

From the six collected opinions, it becomes obvious that
for many current areas of research C++ or PYTHON are
good, pragmatic choices. However, there is something to
say about the good, old-fashioned AI languages. In one con-
tribution it is shown how parsimoniously and transparent a
rather complex graph problem can be represented in PRO-
LOG and how efficient the problem can be solved. A further
contribution shows that there is still demand for reflection
and the ability of code which modifies itself—which was
one of the main features incorporated in Lisp and considered
crucial for an AI programming language.1 In this contribu-
tion, the term rewriting language MAUDE is favoured. This

1See, e.g., slides of Aaron Sloman’s talk to first year AI students
http://www.cs.bham.ac.uk/~axs/misc/talks/setools-ailanguages.pdf.

This collection of contributions was compiled and introduced by Ute
Schmid, member of the editorial board.

language—as well as many other recent and not so recent
developments in the context of functional programming—
can be seen as offsprings of the basic concepts of AI pro-
gramming introduced by John McCarthy. McCarthy—father
of LISP, father of AI—died at age 84 in October 2011. His
work, including the introduction of abstract syntax and proof
techniques for properties of programs, will live on.

2 Do You Know What You Are Doing?—Start
High-Level, then Go Mainstream

Stefan Mandl
Universität Augsburg
Lehrstuhl für Datenbanken und Informationssysteme
E-mail: mandl@informatik.uni-augsburg.de

“Computers are like a bicycle for our minds”—if this fa-
mous slogan which was propagated by recently deceased
Steve Jobs is in fact true, if computers really help us think,
and more specifically, if programming helps us think, then
programming languages are the languages we have to think
in when we think with the help of a computer. So here I
take the liberty to rephrase the original question “What lan-
guage do you use to create your AI programs and why?” to
“What (programming!) language do you use to think about
AI systems?” As researcher I work in two modes: engineer-
ing mode and high-level mode.

In engineering mode the system behavior to achieve is
quite clearly specified and aspects such as correctness, re-
liability, and performance are central when thinking about
AI systems. Consequently, in engineering mode I use tools
and languages that any engineer of any field of Computer
Science would use: C(++), Java, SQL, IDEs, . . . , and most
important: libraries!

http://www.cs.bham.ac.uk/~axs/misc/talks/setools-ailanguages.pdf
mailto:mandl@informatik.uni-augsburg.de

100 Künstl Intell (2012) 26:99–106

In high-level mode on the other hand, the behavior to
achieve often is only a vague idea, sometimes in the form
of a list of ‘what-if’ questions. Then aspects like fast pro-
totyping, high-level abstractions, meta level programming
and conciseness are important. The shorter the program the
better, as short programs are easier to modify. In such situ-
ations I often use LISP or PROLOG for the first shot of the
system. Both LISP and PROLOG share the property of being
homoiconic languages (Programs are written in the form of
a data structure the language supports well; i.e. lists in LISP

and first-order terms in PROLOG), which allows for stun-
ning meta-programming facilities right out of the box. Mod-
est datasets can be represented and manipulated directly in
source code alongside the algorithms and by using features
such as the very powerful LISP macros, the programming
language literally can be tailored to the problem at hand. Ide-
ally a domain specific language would emerge that would be
well suited to implement the desired behavior. Sadly enough
we do not live in an ideal world and henceforth, as the pro-
gram matures, at least in my projects, LISP and PROLOG

tend to show their weaknesses. As LISP and PROLOG are
rarely used these days, it is difficult to share the program
with colleagues. When the system is developed in the con-
text of an industrial research project, industrial partners usu-
ally have very specific constraints regarding the implemen-
tation language. But even when building research-only pro-
totypes, sooner or later one usually misses a certain library
or framework (“the demo looks great now, so let’s run it on
our Tomcat server”). For me this is the time to think about
re-implementation in a more mainstream programming lan-
guage. One could regard this as a waste of time, but I found
that usually re-implementation is not a bad idea for a proto-
type that has been created in a hurry.

Let me illustrate this approach by the following exam-
ple. For my thesis about handling unconsidered contexts
of formalized knowledge [1], initially I had a lot of differ-
ent ideas involving Genetic Algorithms, Machine Learning,
and Logic Programming. The first prototype implementa-
tion was created using LISP. LISP’s powerful object system
(CLOS) allowed me to write very general algorithms that
worked across different domains like planning, and answer
set programming. Soon enough I had developed a bunch
of macros for setting up and integrating new problem do-
mains. Sure some external tools had to be integrated by us-
ing implementation specific constructs for hooking up to ex-
ternal operating system processes, but I got quite far. Un-
til I reached the point where I wanted to create a demo for
coping with unconsidered context in an image classification
scenario. There, the use of external tools became more and
more painful, until I finally decided that it is time to re-
implement the algorithms in JAVA. Starting an implemen-
tation from a working prototype is much easier than starting
from scratch and most importantly, I had already figured out

all the algorithms and which data structures I wanted to use
in the new version. The re-implementation only took a few
weeks (part time, as I had other duties as well), and to this
day I never looked at the LISP version again.

So starting at a high level and then going mainstream
turned up to be the right approach for me. I’m in no posi-
tion to recommend this approach to anyone else. Probably
one could also think a lot first, work it all out on paper and
then implement it, or one’s mind is simply tuned to think in
JAVA. But for me, as I want the computer as a bicycle for
my mind, starting high-level and then going mainstream is
the way to go when building systems I initially do not fully
understand.

References

1. Mandl, Stefan: Erschließung des unberücksichtigten Kontexts for-
malisierten Wissens. Künstliche Intelligenz 23 (2009), Nr. 1, S. 60–
62

3 The Zest for Prolog Programming

Helmar Gust
Institute for Cognitie Science
University of Osnabrück
E-mail: hgust@uos.de

3.1 Introduction

When invented in the early seventies Prolog was a real
breakthrough in programming paradigms. It was conceptu-
ally developed by Alain Colmerauer built on a logical ba-
sis suggested by Robert Kowalski followed by a first imple-
mentation by Philippe Roussel [1]. The next milestone was
David Warren’s method of compiling logic programs into
native code of a virtual machine [2]. Moreover, this work
established the standard Prolog syntax used in the legendary
DEC 10 implementation, which essentially is used until to-
day. Based on the 1965 advancement in automatic theorem
proving technology [3] Prolog uses very basic but powerful
principles: unification and a very simple version of resolu-
tion. This ensures that Prolog programs have a logical and a
procedural interpretation.

This together with the fact that the core of Prolog can
be implemented in a very efficient way enables the usage
of Prolog as a general purpose programming language, al-
though it was originally invented for a quite restricted field
of application: The implementation of grammars.

In the early eighties the Fifth Generation Computer Sys-
tems (FGCS) initiative of the MITI (Japanese Ministry of
International Trade and Industry) pushed the logic program-
ming paradigm and tried to develop special hardware that
runs logic programs as native code [4]. The goal to establish
a new computer hardware/software paradigm failed mainly
for two reasons:

mailto:hgust@uos.de

Künstl Intell (2012) 26:99–106 101

1. Progress in general purpose hardware was so fast that
it easily outperformed all types of specialized hardware
like the FGCS developments, but also the Lisp machines.

2. The choice for concurrent logic programming [5] with
committed choice turned out to be not a clean enough
concept. Progress in constraint based programming
opened a different direction of giving logic programming
a cleaner basis.

Constraint Logic Programing had become a popular is-
sue. This is not restricted to Prolog or extending Prolog with
solvers for constraint satisfaction problems (CSPs). Solving
CSPs has become an own field of research and there are
many approaches based on different host languages [6].

3.2 Essential Prolog Features

There are still a lot of groups working with Prolog, but in
the application domain Prolog seems to live only in niches
(e.g. Watson uses Prolog for NLP [7]).

I think that nowadays Prolog is underestimated. The es-
sential features that fascinated me from the beginning in de-
veloping programs in Prolog are:

1. Logical variables: do not bother about variable assign-
ment, Prolog will do it for you (except inside negations).

2. Weak typing: don’t bother about types, every type of data
may occur everywhere.

3. Flat and modular program structures: every clause has its
own semantics (except in the context of cut).

4. Few and transparent evaluation principles (like unifica-
tion and backtracking search).

5. Clean interface to add additional functionality like
solvers for different CSP domains.

6. Weak discrimination between data and code: build data
and evaluate it as code without extra transformations.

7. Incremental compilation and decompilation (assert and
retract clauses dynamically).

3.3 Some Experiences with Prolog

Of course, the relation of a programmer to a programming
language is largely determined by the individual history and
experience. So I would like to present here two experiences
of mine that somehow shed some light on the reasons for my
zest for programming in Prolog.

I remember my first contact with Prolog trying out Micro
Prolog3 on a CPM machine. For those who are too young
to have come across such a computer: less than 64 KB of
memory, a 1 MHz 8 Bit processor, only floppies as mass

3A small Prolog using a Lisp like syntax. Some times I yearn for such
a minimalistic language.

storage. Micro Prolog reached not much more than 100 in-
ferences per second on such a machine. We tried reimple-
menting a natural language question answering application
(we developed in Simula4 on the IBM VM/370 mainframe
of the computer center; some thousand lines of code).

We were deeply impressed by the compactness of the
Prolog code the performance of the program and the ease
of reimplementing the basic functionality of our system: for
tasks that run for minutes on the mainframe the Micro Pro-
log program reacted nearly immediately. We had the impres-
sion that if we had used Prolog from the beginning on the
project we would have saved dozens of month of hard pro-
gramming work. To get familiar with this strange new pro-
gramming paradigm I deconstructed Micro Prolog and im-
plemented my own extended Prolog system.

Another more general and very typical situation I faced
several times is the following: A student has to write a Bach-
elor thesis and wants to use some standard AI methods in an
application field, e.g. planning. The student is familiar with
Java, since they learn Java in the first semester and with
Prolog later they do not really get familiar. At the end she
comes up with an implementation of a planning algorithm
in Java and some little application: all together about a thou-
sand lines of code. The program works more or less well, but
the student dramatically underestimated the implementation
effort, because she had to implement all the data-structures
and the unification procedure and she had to handle non-
determinism by her own. Moreover, the program was flawed
and couldn’t handle a lot of cases correctly. My remark “in
Prolog it would have been thirty lines of code and it would
have worked” was of course quite frustrating for her. When-
ever one needs unification and/or nondeterminism it is quite
hard to implement this from the scratch.

3.4 A Challenging Example

As a small but challenging example the reader might have a
look at the following problem computing hamiltonian paths
in graphs wrapped in the following task:5 “Write a program
that computes all possibilities to run a cooling duct through
a computer center touching all rooms which belong to the
computer center exactly once, respecting the give intakes
and outlets. Rooms are organized in a grid and there are
rooms which do not belong to the computer center.” A Pro-
log solution can be found in [8]. It nicely shows how mod-
ular and well structured a solution can be. Nearly all the
code in simply specifying the problem. The solver itself is
four lines of trivial code.6 It uses nearly all the features of

4One of the first object oriented programming languages.
5The original problem can be found at http://www.quora.com/
challenges.
6Which with tricks can be even collapsed to one call.

http://www.quora.com/challenges
http://www.quora.com/challenges

102 Künstl Intell (2012) 26:99–106

Prolog listed in the above list. The solution process is quite
efficient. It runs in 25 seconds for the original problem on
Eclipse Prolog on my MacBook Pro.7 I wonder if there is
any implementation in another programming language that
allows such an abstract specification of the problem and the
solver and that turns out to be comparable efficient. Further
more, what is quite striking: The solution is even much more
general than requested by the requirements, since it is able
so solve the problem without any change in case of multiple
intakes and outlets.

3.5 Conclusion

The classical competitor having some of the mentioned fea-
tures is, of course, Lisp, but in Lisp there are no logical vari-
ables, no unification, no non-determinism. Function defini-
tions tend to be mountains of parentheses. Of course, there
are modern alternatives like Python (weak typing and nice
data structures), ML and Haskell (type inferences), and PHP
(something like weakly typed C for Web interfaces), and I
use all of these in special cases. But if it comes to attack a
new problem that is not strongly related to building a user
interface, then my first try is Prolog.

There are a lot of things I have to criticizes in the standard
Prolog implementations, things where life could be made
easier in writing Prolog programs.

• The intermixture of procedural and logical semantics of
clauses has some shortcomings (purely declarative code
can sometimes be evaluated more efficiently while losing
the procedural interpretation).

• Need for more flexible standard input (it is quite boring
to write complex code to simple read a natural language
sentence).

• Lack of a functional sub-language (although there are ap-
proaches to compile functional code to Prolog [9]).

Nevertheless, for people like me who somehow inter-
nalized the logic programming paradigm solving problems
practically means writing Prolog programs.

References

1. A. Colmerauer, P. Roussel, in III, CACM Vol. 33, No 7 (1993),
pp. 37–52

2. D.H. Warren, An abstract prolog instruction set. Technical note, Ar-
tificial Intelligence Center @ SRI (1983)

3. J.A. Robinson, Journal of the Association for Computing Machin-
ery 12(1), 23–41 (1965)

4. P. Rouchy, TeamEthno—Online Issue 2, 85 (2006). June 2006
5. E. Shapiro, ACM Computing Surveys 21(3), 412–510. (1989)
6. F. Rossi, P. van Beek, T. Walsh (eds.). Handbook of Constraint Pro-

gramming (Elsevier, 2006)

7Roughly a factor of 10 to 20 compared to the C++ hand coded ‘opti-
mal’ solution mentioned at http://www.quora.com/challenges.

7. A. Lally, P. Fodor. Natural language processing with prolog in
the ibm watson system (2011). URL http://www.cs.nmsu.edu/ALP/
2011/03/natural-language-processing-with-prolog-in-the-ibm-
watson-system/

8. H. Gust. Solution of the data center cooling promblem in polog
(2011). URL https://cogsci.uni-osnabrueck.de/~hgust/programs/
quora_datacenter_cooling.pl

9. J. Ireson-Paine (2003). URL http://www.j-paine.org/grips.html

4 Code as Data—Creating Programs which Create
Programs with Maude

Emanuel Kitzelmann8

International Computer Science Institute, Berkeley, USA
E-mail: emanuel@icsi.berkeley.edu

Before I started to implement my inductive programming
algorithm IGOR 2 [2], which I had developed as part of my
doctoral research, I had used LISP to implement inductive
programming (IP) systems. LISP was a reasonable choice
since IP is all about dealing with code as data. In partic-
ular, IP is concerned with synthesizing programs from in-
complete specifications such as input/output examples or
computation traces. So why did I choose the term-rewriting
based language MAUDE [1] to implement IGOR 2?

IGOR 2 synthesizes recursive constructor (term rewrit-
ing) systems (CSs) from non-recursive CSs that specify the
desired functions on parts of their domains. In the simplest
case, the specifying CS consists of a number of ground rules
and denotes a set of I/O examples. CSs can be seen as first-
order functional programs: They consist of equations over
algebraic types which are interpreted as reduction rules and
may contain constructors in their heads (pattern matching).
Figure 1 shows an example of a specification and the syn-
thesized function.

I had two (plus one) reasons for choosing MAUDE. First,
MAUDE’s so-called functional modules, a certain subset of
the language, are an extended form of CSs. Hence IGOR 2’s
objects—specifications and generated programs—are valid
MAUDE programs and I didn’t need to care about imple-
menting my own object language. Second, MAUDE has
powerful reflection capabilities that facilitate parsing, ma-
nipulation and evaluation of MAUDE code from within
MAUDE programs, just like quoted expressions in LISP

can represent code, can be manipulated by list functions
and evaluated. (And third: I felt like trying something
new.)

Reflection means that for all constructs of MAUDE pro-
grams (signatures, terms, equations, complete modules)
data structures to represent and manipulate them are im-
plemented in MAUDE’s standard library. Meta-represented
terms, equations, modules etc. are terms of types Term,

8The author is funded within the DAAD FIT-programme.

http://www.quora.com/challenges
http://www.cs.nmsu.edu/ALP/2011/03/natural-language-processing-with-prolog-in-the-ibm-watson-system/
http://www.cs.nmsu.edu/ALP/2011/03/natural-language-processing-with-prolog-in-the-ibm-watson-system/
http://www.cs.nmsu.edu/ALP/2011/03/natural-language-processing-with-prolog-in-the-ibm-watson-system/
https://cogsci.uni-osnabrueck.de/~hgust/programs/quora_datacenter_cooling.pl
https://cogsci.uni-osnabrueck.de/~hgust/programs/quora_datacenter_cooling.pl
http://www.j-paine.org/grips.html
mailto:emanuel@icsi.berkeley.edu

Künstl Intell (2012) 26:99–106 103

sort NList . ∗∗∗sort/type for lists of natural numbers
op nil : → NList [ctor] . ∗∗∗empty list
op _:_ : Nat NList → NList [ctor] . ∗∗∗cons
vars x, y, z : Nat . var xs : NList . ∗∗∗variables

op last : NList → Nat . ∗∗∗signature for last

∗∗∗specification
eq last(x: nil) = x .
eq last(x:y: nil) = y .
eq last(x:y:z: nil) = z .

∗∗∗synthesized solution
eq last(x: nil) = x .
eq last(x:y:xs) = last (y:xs) .

Fig. 1 Example last: Type and specification (input to IGOR 2) and in-
duced solution (IGOR 2 output) in MAUDE syntax

Equation, Module etc. and can be rewritten by a MAUDE

program just like any other term. For example, consider a
MAUDE module, let’s say a module M that contains the two
equations of the synthesized solution from Fig. 1. Applying
upEqs(’M, false) would then yield

eq ’ last [’_:_[’x:Nat,’ nil .NatList]] = ’ x:Nat [none] .
eq ’ last [’_:_[’x:Nat,’_:_[’y:Nat,’xs:NatList]]] =

’ last [’_:_[’y:Nat,’xs:NatList]] [none] .

which is a term of type EquationSet. Also rewriting and re-
lated concepts like matching and substitutions are imple-
mented at the meta-level. For example,

metaMatch(upModule(’M,false), ’_:_[’x:Nat,’xs:NatList],
’_:_[’1.Nat, ’_:_[’2.Nat,’ nil .NatList]] , nil , 0)

returns the term (of type Substitution):

’ x:Nat← ’1.Nat , ’xs:NatList← ’_:_[’2.Nat,’ nil .NatList] .

Two further features that distinguish MAUDE from other
(functional) programming languages are subtypes and oper-
ator properties like associativity, commutativity etc. which
(together with pattern matching) permit succinct definitions
of data structures. Figure 2 shows examples for lists and sets.

I covered some features that let me chose MAUDE for
implementing IGOR 2, but MAUDE has much more to offer.
Types can be parameterized and besides functional modules
there are so-called system modules, that let you specify and
implement concurrent and non-deterministic systems, and
even object-oriented modules. MAUDE is a logical frame-
work in which more specific languages can be modeled. It is
a strictly declarative language and includes a model checker
such that properties of a MAUDE program/theory can au-
tomatically be checked. The weak points of MAUDE are a
rather small library with only few predefined data structures
and the lack of suitable input/output handling.

sort NatC . ∗∗∗a sort for Nat collections
subsort Nat < NatC . ∗∗∗a Nat is a Nat collection, size 1
op none : → NatC [ctor] . ∗∗∗the empty collection
∗∗∗we define a constructor _,_ to build collections from
∗∗∗existing ones and make it associative and having none
∗∗∗as id element; the collection now corresponds to a list
op _,_ : NatC NatC → NatC [ctor assoc id: none] .
var x : Nat . var xs : NatC . ∗∗∗variables
∗∗∗now getting the last element from a list is just
∗∗∗pattern matching (like getting its first element)
op last : NatC → Nat . eq last((xs,x)) = x .
reduce last ((1,2,3)) . Result: 3 ∗∗∗a quick test
∗∗∗let’s make the collection a set by adding commutativity
∗∗∗and eliminating multiple instances of the same element
op _,_ : NatC NatC → NatC [ctor assoc comm id: none] .
eq ((x , x)) = x .
reduce (1,2,3,2) . Result: (1,2,3)

∗∗∗every element can be the first one due to commutativity
op member :Nat NatC → Bool .
eq member (x, (x , xs)) = true .
eq member (x, xs) = false [owise] .
reduce member(3, (1,2,3,4)). Result: true.

Fig. 2 Succinctly defining data structures in MAUDE

References

1. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N.,
Meseguer, J., Talcott, C.: All About Maude—A High-Performance
Logical Framework. Springer-Verlag (2007)

2. Kitzelmann, E.: A combined analytical and search-based approach
for the inductive synthesis of functional programs. Künstliche Intel-
ligenz 25(2), 179–182 (2011)

5 Optimize Runtime, but Also Your Own Time

Malte Helmert
Universität Basel
Fachbereich Informatik
E-mail: malte.helmert@unibas.ch

When Silvia Richter and I started working on the Fast
Downward planning system [1] in 2003 with the goal of sub-
mitting it to the 4th International Planning Competition, we
faced two major challenges:

1. Writing fast code: the planner had to be efficient to have
a chance at winning the competition.

2. Writing code fast: the planner had to be developed
quickly to meet the submission deadline.

These are conflicting goals, as efficient implementations
take time: programming languages offering the best poten-
tial performance tend to work at lower levels of abstraction;
maximum performance often requires specifically tailored
data structures; and optimization often hurts modularity of
code.

However, not all parts of a planning system—or indeed
the vast majority of programs—are equally time-critical.
A few operations, such as computation of heuristic values,

mailto:malte.helmert@unibas.ch

104 Künstl Intell (2012) 26:99–106

typically require more than 90% of the computation time,
yet make up less than 10% of the code. Therefore, our so-
lution for the two challenges above was to write fast code
where it mattered, and to write code fast where we could
get away with it. For us, this meant using a mix of pro-
gramming languages: C++ where performance was critical
and Python where programmer time was the more important
metric to minimize.

In 2004, the planner consisted of about 3K lines of
Python code and 5K lines of C++ code. Studies and our
own experience show that Python code is usually around a
factor of 4 more compact than C++ code that implements
identical functionality, which means that roughly 70%
of the planner functionality was implemented in Python.
Since then, we have integrated many new search algo-
rithms, heuristics and other features into Fast Downward and
the balance between the two programming languages has
changed somewhat, but we have never regretted the basic
decision of using C++ for program efficiency and Python
for programmer efficiency.

In this day and age, the use of C++ to build efficient AI
systems probably does not need much explanation, so I only
briefly point out that for our purposes, memory efficiency
is as important as runtime efficiency; search code can very
quickly fill up gigabytes of RAM. Memory efficiency is one
of the areas in which C++ shines compared to alternatives
like Java.

The use of Python might need a bit more justification
since it is still often considered as a “scripting language”
to serve as glue between programs written in more tradi-
tional programming languages that perform the heavy algo-
rithmic lifting. I believe that this is a mistaken view. Large
applications are now routinely being written in modern dy-
namic object-oriented programming languages like Python
and Ruby.9 The defining characteristic of these program-
ming languages is not that they can be used for “scripting”
but that they work at a very high level of abstraction. Python
really shines at writing algorithmic code, and in addition to
using it for code where constant-factor efficiency is less im-
portant [3], I now routinely use it for proof-of-concept im-
plementations of performance-critical code [4, 2]. We have
also used Python very successfully for teaching AI, for ex-
ample in a general AI practical that covered a diverse range
of topics and in a planning practical where a group of stu-
dents developed a complete domain-independent planning
system from scratch over a semester.10

9Indeed, almost the complete development tool-chain surrounding our
planning system is implemented in Python, including the revision con-
trol system we use (Mercurial), the issue tracker (Roundup), wiki en-
gine/website (MoinMoin) and build automation tool (BuildBot).
10The resulting pyperplan planner is online at https://bitbucket.org/
malte/pyperplan.

In summary, my message is: use the right tool for the
right purpose. Efficiency matters, but not everything needs
to be equally efficient. Do not be afraid to mix and match.
Above all, conserve the most valuable resource at your dis-
posal: your time.

References

1. Helmert, M.: The Fast Downward planning system. JAIR 26,
191–246 (2006)

2. Helmert, M., Domshlak, C.: Landmarks, critical paths and ab-
stractions: What’s the difference anyway? In: Proc. ICAPS 2009,
pp. 162–169 (2009)

3. Helmert, M., Röger, G., Karpas, E.: Fast Downward Stone Soup:
A baseline for building planner portfolios. In: ICAPS 2011 Work-
shop on Planning and Learning, pp. 28–35 (2011)

4. Richter, S., Helmert, M., Gretton, C.: A stochastic local search ap-
proach to vertex cover. In: Proc. KI 2007, pp. 412–426 (2007)

6 Why We Develop Intelligent Conversational Agents
with Python

Hendrik Buschmeier, Ramin Yaghoubzadeh,
Christian Pietsch, Stefan Kopp
AG Sociable Agents
CITEC, Technische Fakultät, Universität Bielefeld
E-mail: hbuschme@TechFak.Uni-Bielefeld.DE

The Sociable Agents Group at the Center of Excellence
“Cognitive Interaction Technology” (CITEC) at Bielefeld
University aims to develop technical systems that can
join humans naturally. This calls for intuitive, socially apt
human-machine interaction and we explore how virtual hu-
mans and humanoid robots can be equipped with the nec-
essary “interaction intelligence”. Our research requires to
understand intelligent behaviour in communication, to de-
vise models of the underlying cognitive processes, to realise
them in implemented systems and to evaluate them in ac-
tual interactions with human users. While a lot of ground-
work code for behaviour animation or graphics is written in
C/C++, we have increasingly come to use Python in our
research on higher-level A.I. modules.

Python is an interpreted, multi-paradigm language, com-
bining procedural, object-oriented and functional aspects,
with transparent syntax and semantics. It is dynamically
typed and has powerful meta-programming capabilities per-
mitting changes to the program even at runtime. At the same
time, Python code is easily readable, as it often resembles a
description of an algorithm in pseudo-code. These proper-
ties facilitate rapid prototyping and testing, with only little
structural changes needed to a minimal prototype in order to
render a model hypothesis into a fully-fledged working sys-
tem. This supports our research methodology of iteratively
modelling and evaluating hypotheses on cognitive processes
in human communication using virtual agents, which may

https://bitbucket.org/malte/pyperplan
https://bitbucket.org/malte/pyperplan
mailto:hbuschme@TechFak.Uni-Bielefeld.DE

Künstl Intell (2012) 26:99–106 105

comprise declarative and procedural knowledge structures
(e.g., in the case of a dialogue manager or a reasoning strat-
egy).

A further reason for using Python is that it comes with
an extensive standard library, while powerful third-party li-
braries for a wide range of relevant A.I. methods are avail-
able as well. For example, machine learning and scientific
computing frameworks such as SciPy or NumPy, proba-
bilistic reasoning engines like ProbCog, or natural language
processing toolkits like NLTK are available. Indeed, Python
has become very popular among computational linguists be-
cause NLTK provides well-documented, mature implemen-
tations of rule-based as well as machine learning-based tech-
niques for natural language processing [1].

Finally, Python has advantageous features from the
software-engineering point of view. Conversational agents
are comprehensive cognitive systems with perception, be-
haviour, reasoning, emotion, attention, language, or knowl-
edge components. Technically, they are developed as dis-
tributed systems. Python supports this through availabil-
ity for different platforms, inter-operability with other lan-
guages, and scalability. At the same time, modern ap-
proaches to embodied interactive systems pose high de-
mands for close integration of perception and action, for
incremental processing, or fine synchronisation of multi-
ple processes, e.g., for different modalities. We have found
Python highly useful for implementing middleware layers
that provide distributed, incremental processing and differ-
ent levels of integration between system components.

References

1. Steven Bird, Edward Loper, and Ewan Klein. Natural Language
Processing with Python. O’Reilly, Sebastopol, CA, 2009.

2. Dennis Merritt. Python for AI and logic programming. Dr. Dobb’s
AI Expert Newsletter, August 2005, 2005.

3. Peter Norvig. Python for Lisp programmers, 2009. http://norvig.com/
python-lisp.html

7 Why We Build Robot Control Systems in . . . well,
in What?

Joachim Hertzberg, Jochen Sprickerhof,
Thomas Wiemann
Institut für Informatik
Universität Osnabrück
E-mail: joachim.hertzberg@uos.de

In terms of research, we are working in AI. In particu-
lar, we are working on building control software for embed-
ded knowledge-based systems, which some would call au-
tonomous mobile robots, some cognitive robots. To program
our share of their control software, we use mainly C++.

Has the decision about the programming language been
difficult? No, not really. Has it been been important? Not

even that, telling in retrospect. It was purely pragmatic, and,
we would say, it was also largely uninteresting. If you wish
to advance the state of the art in that type of AI systems,
or robots, you should better not attempt to start designing
their software with a blank page and some compiler or in-
terpreter of whatever programming language. The reason
is, again, pragmatic: To get a cognitive robot to work, you
would need, in addition to an appropriate hardware plat-
form with sensors and actuators, an amazing set of func-
tionality. It ranges from very low-level stuff like device
drivers, over components like math libraries and sensor pro-
cessing libraries (which are definitely not low-level, yet out
of the scope of our own research), to state-of-the art tools
in knowledge representation and reasoning. Luckily, there
is a huge set of open-source robotic middleware and soft-
ware platforms like Player or, more recently, ROS or Oro-
cos, which emerged much later than our original decision
about a programming language, but which enhance tremen-
dously the productivity in building research software pro-
totypes. To decide about which of these building blocks
get used, is an important, and sometimes tricky decision—
much more important than the decision about the program-
ming language in which we would add our own contribu-
tions.

Having said that, we have made no point pro any “AI
programming language”, but we have not made a point
pro C++ or pro any other language either. Building robot
control systems with the limited resources that a research
team in an academic setting has, means to integrate a large
variety of existing and available state-of-the-art software
components, be they components with a typical AI back-
ground, or any other. The key for the success of a frame-
work like ROS is that it provides clearly defined inter-
faces to combine different modules for different tasks. The
question is, what task will be solved by a certain compo-
nent in an integrated robot control system? How do I in-
terface it? Once this has been defined, it can be imple-
mented in any programming language. The additional effort
that would result from taking the decision pro this or that
language for programming the own contributions, in addi-
tion to the re-used software components, is relatively mi-
nor.

If you wish to contribute actively to the above-mentioned
large pool of open-source software available for robot con-
trol, you better use a language that is common in the scene—
and, sorry to say to an AI audience, that is primarily the
robotics scene. That gives C++ a slight pro, but we would
never make a principled argument out of it. On the other
hand, C++ has its known nuisances and pitfalls as a pro-
gramming language; we would go as far as saying that using
in 2011 a programming language that lets you even think
about storage allocation is downright anachronistic. Yet, at
the time, more than ten years ago, when the decision had

http://norvig.com/python-lisp.html
http://norvig.com/python-lisp.html
mailto:joachim.hertzberg@uos.de

106 Künstl Intell (2012) 26:99–106

to be made about the main language to program our robot
control systems, the pragmatic reasons pro C++, including
the availability of able programmers in that language, were
dominant, and we have never regretted the decision.

Was that an argument against specific “AI programming
languages”? In our share of AI programming, we see no
need to use one of them. However, our eclecticism about in-
tegrating components in our robot controllers has included
from time to time to build and interface to the rest of the
software little modules in Prolog, when pragmatism so sug-
gested. In brief: The choice of a concrete programming lan-
guage seems of so minor importance in our part of AI re-
search today that we would not argue pro or contra any spe-
cific modern language, whatever its labels.

8 Conclusions

The above collection of statements highlights some (typi-
cal?) preferences for programming languages currently used
to create AI programs. As we see, the days of Usenet flame
wars are over and pragmatism rules over passion. For sure,
there are researchers using and developping other interesting
languages not covered in this discussion—among them con-
straint programming languages such as CHIP, query lan-
guages for the semantic web, and functional languages such
as HASKELL. Another aspect of interest might be which pro-
gramming concepts and languages are or should be taught
in AI. It would be great to continue this discussion and we
strongly encourage further contributions!

	What Language Do You Use to Create Your AI Programs and Why?
	Introduction
	Do You Know What You Are Doing?-Start High-Level, then Go Mainstream
	References

	The Zest for Prolog Programming
	Introduction
	Essential Prolog Features
	Some Experiences with Prolog
	A Challenging Example
	Conclusion
	References

	Code as Data-Creating Programs which Create Programs with Maude
	References

	Optimize Runtime, but Also Your Own Time
	References

	Why We Develop Intelligent Conversational Agents with Python
	References

	Why We Build Robot Control Systems in … well, in What?
	Conclusions

